
Advanced Mathematical Models & Applications

Vol.5, No.1, 2020, pp.38-52

HIGH-ORDER JACOBI TAU SCHEME FOR NONLINEAR
VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH
PROPORTIONAL DELAY

H. Ansari Ouzi∗

Sahand University of Technology, Tabriz, Iran
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1 Introduction

The main concern of this paper is to introduce and analyze a well-posed approximate method
based on the Jacobi Tau scheme for the numerical solution of the following nonlinear Volterra
integro-differential equations with proportional delay{

Dy(x) = f(x) +
qx∫
0

K(x, t)F (t, y(t))dt, q ∈ (0, 1), x ∈ Ω = [0, 1],

y(ζ)(0) = dζ , ζ = 0, 1, . . . , ξ − 1,

(1)

where f(x),K(x, t) and F (t, y(t)) are given appropriately smooth functions on their respective
domains also F (t, y(t)) nonlinear in y(t), and y(t) is a solution for the main equation to be
determined and dζ some given constants. Let D be a linear differential operator of order nd with
polynomial coefficients defined by

D :=

nd∑
i=0

pi(x)
∂i

∂xi
,

where pi(x) :=
αi∑
j=0

pijx
j and αi is the degree of pi(x). These kinds of equations include many in-

teresting applications for special cases such as, physics, biology, ecology, control theory and so on
(Bellen & Zennaro, 2003; Iserles & Liu, 1994, 1997a,b; Ishitawa & Muroya, 2009; Muroya et al.,
2003; Tohidi et al., 2013). From well-known existence and uniqueness theorems we can conclude
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that in (1), smooth data lead to solutions that are smooth on the entire interval. Thus spectral
methods which make high-order approximate solutions for the functional equations with smooth
solutions can be applied to obtain a reliable numerical solution for (1). The speed of convergence
is one of the great feature of the spectral methods. Besides, the spectral methods have high
rates of convergence, they also have high level of reliability.

Several analytical and numerical techniques are used for solving (1) such as spectral collo-
cation method (Ezz-Eldien & Doha, 2019; Ghoreishi & Mokhtary, 2014; Ishtiaq et al., 2009a,b;
Wei & Chen, 2012; Yuzbasi, 2014), iterated collocation method Brunner (2004), piecewise col-
location method (Ishitawa & Muroya, 2009; Muroya et al., 2003), Legendre Galerkin method
(Alsuyuti et al., 2019; Cai & Qi, 2016; Mokhtary, 2019), computational Tau scheme (Ansari &
Mokhtary, 2019; Mokhtary, 2014, 2016, 2017) and etc. But all aforementioned methods have
been applied to the linear case and there are a few numerical methods to obtain approximate
solutions of nonlinear Volterra integro-differential equations with proportional delay in the lit-
erature.

In Mokhtary (2019) computational Jacobi Galerkin method for multiple delay pantograph
integral equations have been investigated by the author. In this procedure a new well-posed
approach for pantograph integral equations is given with convergence analysis. Numerical results
confirm the theoretical predictions of the well-posedness and spectral accuracy. The author
also provided a camparison of condition numbers and accuracy between this scheme and the
spectral collocation method proposed in Ishtiaq et al. (2009a) where we can see a meaningful
growth in errors and condition numbers while the errors of the Legendre Galerkin algorithm
are decreased versus N and condition numbers remain bounded. We considered applicable and
useful shifted Jacobi polynomials (Alsuyuti et al., 2019; Doha et al., 2011; Ezz-Eldien & Doha,
2019; Ezz-Eldien et al., 2017) and Ansari & Mokhtary (2019); Mokhtary (2019) then we extend
these computational schemes for the numerically solving nonlinear Volterra integro-differential
equations with proportional delay.

In this paper, we develop and analyze a high-order operational Jacobi Tau scheme for the
numerical solution of (1). The main idea of the Jacobi Tau scheme is to express the solution
of the problem as a finite sum of given basis of functions and converts nonlinear VIDE’s with
proportional delay to a system of nonlinear algebraic equations which can be solved directly by
forward substitution method.

The outlines of the present paper are arranged as follows. In Section 2, the numerical scheme
of the considered equation is explained. Section 3, is devoted to the illustrative results. Finally,
Section 4 outlines the conclusions.

2 Numerical scheme

The main purpose of this section is to give a computational Jacobi Tau scheme for the numerical
solution of (1). To this end, we consider

yN (x) =

N∑
i=0

yiJ
α,β
i (x) = y J, (2)

as the Tau approximation of (1) where y = [y0, y1, ..., yN , 0, ...] and

J = JX = [Jα,β
0 (x), Jα,β

1 (x), ..., Jα,β
N (x), ...]T ,

is the shifted Jacobi polynomial bases on Ω (Canuto et al., 2007; Guo, 1998; Hesthaven et al.,
2007; Shen et al., 2011). Here J is an infinite order upper triangular coefficient matrix with

degree Jα,β
i (x) ≤ i for i = 0, 1, 2, ..., and X = [1, x, x2, ..., xN , ...]T . Now we obtain matrix

and vector multiplications for differential term of equation (1), to this end following the op-
erational Tau method which proposed by Ortiz & Samara (1981) and other related papers in

39



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.5, N.1, 2020

Hossieni & Shahmorad (2007); Pour-Mahmoud et al. (2005); Shahmorad (2005) are based on
three simple matrices

µ =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 , ℓ =


0 1 0 0 · · ·
0 0 1

2 0 · · ·
0 0 0 1

3 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 ,

η =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 2 0 0 · · ·
0 0 3 0 · · ·
...

...
...

...
. . .

 .

Lemma 1. (Pour-Mahmoud et al., 2005) Let y(x) be a polynomial as

y(x) =

∞∑
i=0

yiJ
α,β
i (x) ≃ ynJ,

then we have

(i)
∂ry(x)

∂xr
= ynJη

rX, r = 1, 2, 3, . . . ,

(ii) xry(x) = ynJµ
rX, r = 1, 2, 3, . . . ,

(iii)

x∫
0

y(s)ds = ynJℓX − ynJℓA,

where yn = [y0, y1, . . . , yn, 0, 0, . . .], A = [1, 0, 0, . . . , 0, 0, . . .]T .

For any linear differential operator D defined in equation (1) and any series

y(x) =
∞∑
i=0

yiJ
α,β
i (x) = y J,

we have

Dy(x) = yΠJJ = yΠJJX, (3)

where Π =
nd∑
i=0

ηipi(µ), ΠJ = JΠJ−1. Assume d = [d0, d1, . . . , dξ−1, 0, 0, . . .] be the vector that

contains right hand sides of conditions. Now we give matrix form for initial conditions, then by
using part (i) of Lemma 1, we can write:

y(ζ)(0) = yJηζX
∣∣∣
x=0

= yJηζe1 = ybζ , ζ = 0, 1, . . . , ξ − 1, (4)

where X
∣∣∣
x=0

= e1 = [1, 0, 0, . . .]T is the first column of identity matrix. We definite columns of

matrix B∗ as

B∗ =
[
bζ

]ξ−1

ζ=0
=
[
Jηζe1

]ξ−1

ζ=0
,

so we have

yB∗ = d. (5)
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Assume that

f(x) =
∞∑
i=0

fiJ
α,β
i (x) = f J, f = [f0, f1, ...],

F (t, y(t)) ≃
N∑
s=0

ρs(t)J
α,β
s (y(t)) =

N∑
s=0

ρ̃s(t)y
s(t).

Substituting (2),(3),(4),(5) and above relations into (1) concludes

y ΠJJ = f J+

N∑
s=0

qx∫
0

K(x, t)ρ̃s(t)
(
yJXt

)s
dt

= f J+

qx∫
0

K(x, t)ρ̃0(t)dt+

N∑
s=1

qx∫
0

Ks(x, t)
(
yJXt

)s
dt, (6)

with Ks(x, t) = K(x, t)ρ̃s(t) for s = 1, 2, ..., N and Xt = [1, t, t2, ..., tN , ...]T .

From Ghoreishi & Hadizadeh (2009), we can find that the matrix formulation of
(
yJXt

)s
as

follows (
yJXt

)s
= yJΥs−1Xt, s = 1, 2, ..., N, (7)

where Υ has the following infinite order upper triangular toeplitz matrix form

Υ =


ỹ0 ỹ1 ỹ2 · · ·
0 ỹ0 ỹ1 · · ·
0 0 ỹ0 · · ·
...

...
...

. . .

 , (8)

with yJ = ỹ = [ỹ0, ỹ1, ..., ỹN , 0, ...]. Substituting (7) into (6) yields

y

(
ΠJJ J−1 −

N∑
s=1

Υs−1

qx∫
0

Ks(x, t)X
tdt

)
J

= f J+

qx∫
0

K(x, t)ρ̃0(t)dt. (9)

Assuming

K(x, t) =

∞∑
i=0

∞∑
j=0

ki,jJ
α,β
i (x)Jα,β

j (t) =

∞∑
i=0

∞∑
j=0

k̃i,jx
itj

Ks(x, t) =
∞∑
i=0

∞∑
j=0

ksi,jJ
α,β
i (x)Jα,β

j (t) =

∞∑
i=0

∞∑
j=0

k̃si,jx
itj , s = 1, 2, ..., NF ,

ρ̃0(t) =
∞∑
i=0

ρ̃i,0J
α,β
i (t) = ρ̃JXt, ρ̃ = [ρ̃0,0, ρ̃1,0, ...],

where k̃i,j and k̃si,j are obtained by rearranging the orthogonal expansions of K(x, t) and Ks(x, t)
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based on the powers of xitj respectively, so can rewrite equation (9) as follows

y

(
ΠJ X −

N∑
s=1

Υs−1

( ∞∑
i=0

∞∑
j=0

k̃si,jx
i

qx∫
0

tjXtdt

))
J

= f J+ ρ̃J

∞∑
i=0

∞∑
j=0

k̃i,jx
i

qx∫
0

tjXtdt. (10)

On the other hand, following the relation

qx∫
0

tjXtdt =

[ qx∫
0

tj+mdt

]∞
m=0

=

[
(qx)j+m+1

j +m+ 1

]∞
m=0

,

we can write

∞∑
i=0

∞∑
j=0

k̃si,jx
i

qx∫
0

tjXtdt

=
∞∑
i=0

∞∑
j=0

k̃si,j

[
qj+m+1

j +m+ 1
xi+j+m+1

]∞
m=0

= KsX, (11)

where Ks is the infinite order upper triangular matrix with only nonzero entries

(
Ks

)
m,m+r+1

=
r∑

i=0

k̃si,r−i

r − i+m+ 1
qr−i+m+1, m, r = 0, 1, ... . (12)

Similarly, we can write
∞∑
i=0

∞∑
j=0

k̃i,jx
i

qx∫
0

tjXtdt = KX, (13)

where K is the infinite order upper triangular matrix with only nonzero entries that are given
by inserting k̃i,r−i instead of k̃si,r−i in (12).

Substituting the relations (11) and (13) into (10) we obtain

y

(
J
( nd∑

i=0

ηipi(µ)
)
−

N∑
s=1

Υs−1KsJ

)
J−1J =

(
fJ+ ρ̃JK

)
J−1J. (14)

To complete the Jacobi Tau discretization of (1), we first project (14) on {Jα,β
i (x)}Ni=0 and then

multiply both sides of the equation obtained on J. Thus we obtain

ỹ
N
ΓN = f̃

N
, (15)

when ỹ
N

= [ỹ0, ỹ1, ..., ỹN ] and f̃
N

= [f̃0, f̃1, ..., f̃N ] are the first N + 1 entries of the infinite
vectors ỹ = yJ and fJ respectively. Moreover ΓN is the principle submatrix of order N +1 from

the infinite matrix

(
nd∑
i=0

ηipi(µ)−
N∑
s=1

Υs−1Ks − ρ̃JK
)
.

Now, we focus on the uniquely solvability of the nonlinear algebraic system (15) and give
a computational algorithm to solve it. To this end we investigate the structure of the matrix(

nd∑
i=0

ηipi(µ)−
N∑
s=1

Υs−1Ks− ρ̃JK
)
. In Refs. Ansari & Mokhtary (2019); Ghoreishi & Hadizadeh
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(2009) the structure of the Υs−1,Ks,
N∑
s=1

Υs−1Ks are given by the upper triangular toeplitz matrix

forms. Thus we can conclude

y

( N∑
s=1

Υs−1KsJ

)
+ ρ̃JK

=

[
0,Λ0(ỹ0),Λ1(ỹ0, ỹ1), ...,ΛN−1(ỹ0, ỹ1, ..., ỹN−1), ...

]
, (16)

ỹ∗ := y J
( nd∑

i=0

ηipi(µ)
)
= ỹ
( nd∑

i=0

ηipi(µ)
)
,

where Λi(ỹ0, ỹ1, ..., ỹi), i ≥ 0 are the nonlinear functions with elements ỹ0, ỹ1, ..., ỹi. Using (16)
and (5) the nonlinear algebraic system (15) can be rewritten as{

ỹ Γj = f̃
j
, j = 0, 1, . . . , N,

y B∗ = d,
(17)

we can rewrite system (17) as follows

y0B
∗
0 = d0

...

yξ−1B
∗
ξ−1 = dξ−1

ỹ∗
0

= f̃
0

ỹ∗
1

= f̃
1
+ Λ0(ỹ0)

ỹ∗
2

= f̃
2
+ Λ1(ỹ0, ỹ1)

...

ỹ∗
N

= f̃
N
+ ΛN−1(ỹ0, ỹ1, ..., ỹN−1), (18)

which can be solved exactly using the forward substitution method. Finally the computational
Jacobi Tau approximation of (1) can be obtained by solving the triangular system yJ = ỹ and
ỹ∗ using the backward substitution method and substituting obtained y into (2). Following
the Refs. Ansari & Mokhtary (2019); Atkinson (1997); Atkinson & Han (2009), the proofs of
convergence and stability analysis can be analyze and investigate, we leave the details of the
proofs to the reader.

3 Numerical results

In this section, we listed several examples to illustrate the powerful and effectiveness of the
operational Jacobi Tau scheme for the numerical solution of (1). To this end, we require some
definitions as follows.

• (Shen et al., 2011)∥.∥∞ is the uniform norm defined by ∥y∥∞ = max
x∈Ω

|y(x)|.

• L2(Ω) is the space of functions whose square is integrable in Ω with the norm∥∥∥y∥∥∥2
2
= (y, y) :=

∫
Ω

y2(x)dx,

where (., .) is the inner product formula.
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All the numerical computations have been done using Matlab software. In the tables pre-
sented here, ”Numerical errors” always refer to the error functions in L1(Ω), L2(Ω), L∞(Ω) re-
spectively, i.e., ∥eN∥1, ∥eN∥2, ∥eN∥∞ and ”orderN” always refers to the order of convergence
which is calculated by,

orderN =

∣∣∣∣∣ log2 ∥eN∥2
∥eN

2
∥2

∣∣∣∣∣.
All the reported results approve the effectiveness of the proposed computational scheme.

Example 1. Consider the following problem{
Dy(x) = f(x) +

qx∫
0

(1 + xt)y2(t)dt, , q ∈ (0, 1), x ∈ Ω = [0, 1],

y(ζ)(0) = 1, ζ = 0, 1,

where q = 0.05, f(x) = 1 + 19x
20 − x2

400 − 31x3

24000 − x4

12000 − x5

640000 , and y(x) = 1 + x. For linear
differential operator we have

D :=

1∑
i=0

pi(x)
∂i

∂xi
,

where p0(x) = 0, p1(x) = 1 + x.

We explain the algorithm details for N = 5 and so on the unknown coefficients of the
approximate solution (2) satisfy in the nonlinear algebraic system (18) where the nonlinear
functions Λi(ỹ0, ỹ1, ..., ỹi) for i = 0, 1, ..., 4 are obtained from (16). Since F (t, y(t)) = y2(t) then
(16) has the following form

yJ

( N∑
s=0

Υs−1Ks

)
= yJΥK2, (19)

where the matrix Υ defined in (8) and by using of shifted Legendre polynomial coefficients

J =



1 0 0 0 0 0
−1 2 0 0 0 0
1 −6 6 0 0 0
−1 12 −30 20 0 0
1 −20 90 −140 70 0
−1 30 −210 560 −630 252

 .

In addition Π,K2 have the following forms which are obtained from (3) , (12) respectively

Π =



0 0 0 0 0 0
1 1 0 0 0 0
0 2 2 0 0 0
0 0 3 3 0 0
0 0 0 4 4 0
0 0 0 0 5 5

 , K2 =



0 q 0 q2

2 0 0

0 0 q2

2 0 q3

3 0

0 0 0 q3

3 0 q4

4

0 0 0 0 q4

4 0

0 0 0 0 0 q5

5
0 0 0 0 0 0


.

Thus (19) and (16) concludes

Λ0(ỹ0) = qỹ0,

Λ1(ỹ0, ỹ1) = q2ỹ0ỹ1,

Λ2(ỹ0, ỹ1, ỹ2) =
q3

3
(ỹ21 + 2ỹ0ỹ2) +

q2

2
ỹ20,

Λ3(ỹ0, ỹ1, ỹ2, ỹ3) =
q4

4
(2ỹ0ỹ3 + 2ỹ1ỹ2) +

q3

3
(2ỹ0ỹ1),

Λ4(ỹ0, ỹ1, ỹ2, ỹ3, ỹ4) =
q4

4
(ỹ21 + 2ỹ0ỹ2) +

q5

5
(ỹ22 + 2ỹ0ỹ4 + 2ỹ1ỹ3). (20)
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On the other hand by using the initial conditions and (4) yields{
ỹ0 = 1,
ỹ1 = 1.

(21)

Inserting (20) into (18) and using

f̃
5
= [f̃

0
, f̃

1
, ..., f̃

5
] = [1,

19

20
,− 1

400
,− 31

24000
,− 1

12000
,− 1

640000
],

we find the unknowns coefficients as follows

ỹ∗
0
= ỹ1 = f̃

0
= 1,

ỹ∗
1
= ỹ1 + 2ỹ2 = f̃

1
+ Λ0(ỹ0) = f̃

1
+ qỹ0,

ỹ∗
2
= 2ỹ2 + 3ỹ3 = f̃

2
+ Λ1(ỹ0, ỹ1) = f̃

2
+ q2ỹ0ỹ1,

ỹ∗
3
= 3ỹ3 + 4ỹ4 = f̃

3
+ Λ2(ỹ0, ỹ1, ỹ2) = f̃

3
+

q3

3
(ỹ21 + 2ỹ0ỹ2) +

q2

2
ỹ20,

ỹ∗
4
= 4ỹ4 + 5ỹ5 = f̃

4
+ Λ3(ỹ0, ỹ1, ỹ2, ỹ3)

= f̃
4
+

q4

4
(2ỹ0ỹ3 + 2ỹ1ỹ2) +

q3

3
(2ỹ0ỹ1),

ỹ∗
5
= 5ỹ5 = f̃

5
+ Λ4(ỹ0, ỹ1, ỹ2, ỹ3, ỹ4)

= f̃
5
+

q4

4
(ỹ21 + 2ỹ0ỹ2) +

q5

5
(ỹ22 + 2ỹ0ỹ4 + 2ỹ1ỹ3). (22)

Finally, by solving system of equations (21) , (22) and inserting solution into (2) the Legendre
Tau solution of the problem is given by

y5(x) = yJX = ỹ X = [1, 1, 0, 0, ...]X = 1 + x,

which is the exact solution.

Example 2. Consider the following problem{
Dy(x) = f(x) +

qx∫
0

3 sin(x− t) cos2(t)dt,

y(0) = 1, y
′
(0) = 0, y

′′
(0) = 1,

where nd = 1, p0(x) = 1, p1(x) = 0 and we choose f(x) with respect to q such as to be the exact
solution y(x) = cosx.

From the reported results in Table 1 and Figure 1, we observed that a good approximation of
the nonlinear VIDE’s with proportional delay is achieved for small values of N . The presented
errors in Fig. 1 and order variations in Table 1, approve the predicted exponential-like (infinite
order) rate of convergence for the proposed method because the orders tend to infinity versus N
and the errors representation is linear. This confirms the reliability and well-posedness of the
proposed scheme in obtaining the approximate solution of the problem.

Example 3. Considering the following problem{
Dy(x) = f(x) +

qx∫
0

(et)3dt,

y(ζ)(0) = 1, ζ = 0, 1, 2,

where nd = 2, p0(x) = 2, p1(x) = −1 and y(x) = ex is the exact solution.

45



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.5, N.1, 2020

Table 1: Approximation errors in various norms for example 2 with using shifted Legendre
polynomials (α = β = 0), q = 0.05.

N ∥eN∥1 ∥eN∥2 ∥eN∥∞ OrderN

2 8.1377× 10−3 1.3516× 10−2 4.0302× 10−2 −
4 1.9568× 10−4 3.7931× 10−4 1.3644× 10−3 3.5733

6 2.7308× 10−6 5.9559× 10−6 2.4528× 10−5 7.7272

8 2.4892× 10−8 5.9721× 10−8 2.7350× 10−7 8.7564

10 1.5983× 10−10 4.1542× 10−10 2.0763× 10−9 13.7246

12 7.6191× 10−13 2.1218× 10−12 1.1423× 10−11 14.8476

14 2.8029× 10−15 8.2939× 10−15 4.7637× 10−14 20.3921

16 8.5815× 10−18 2.6131× 10−17 1.5774× 10−16 21.5498

18 3.6083× 10−19 5.9285× 10−19 1.5515× 10−18 25.3358

20 3.8041× 10−19 6.4138× 10−19 1.9626× 10−18 −

Figure 1: We observe approximation errors in various norms for example 2 with using shifted
Chebyshev polynomials(α = β = − 1

2 ), q = 0.95.

Figure 2: We observe approximation errors in various norms for example 3 with using shifted
Chebyshev polynomials, q = 0.95.
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Table 2: Approximation errors in various norms for example 3 with using shifted Legendre
polynomials, q = 0.05.

N ∥eN∥1 ∥eN∥2 ∥eN∥∞ OrderN

2 5.1615× 10−2 7.9682× 10−2 2.1828× 10−1 −
4 1.6152× 10−3 2.9539× 10−3 9.9485× 10−3 3.2949

6 2.7860× 10−5 5.7928× 10−5 2.2627× 10−4 5.6715

8 3.0289× 10−7 6.9792× 10−7 3.0586× 10−6 8.3503

10 2.2606× 10−9 5.6740× 10−9 2.7313× 10−8 11.2654

12 1.2286× 10−11 3.3180× 10−11 1.7288× 10−10 14.3728

14 5.0771× 10−14 1.4616× 10−13 8.1549× 10−13 17.6424

16 1.6482× 10−16 5.0224× 10−16 2.9762× 10−15 21.0523

18 4.0848× 10−19 1.3567× 10−18 8.5508× 10−18 24.6049

20 2.2130× 10−20 3.4427× 10−20 8.1559× 10−20 25.8281

Example 4. Assume that{
Dy(x) = f(x) +

qx∫
0

x3 cos(t)esin(t)dt,

y(ζ)(0) = 0, y(ζ+1)(0) = 1, ζ = 0, 2,

where nd = 3, p0(x) = 1, p1(x) = 2, p2(x) = 0, p3(x) = −2 and the exact solution is given by
y(x) = sinx.

Table 3: Approximation errors in various norms for example 4 with using shifted Legendre
polynomials, q = 0.05.

N ∥eN∥1 ∥eN∥2 ∥eN∥∞ OrderN

6 2.4528× 10−5 5.0607× 10−5 1.9568× 10−4 −
8 2.7350× 10−7 6.2704× 10−7 2.7308× 10−6 −
10 2.0763× 10−9 5.1931× 10−9 2.4892× 10−8 −
12 1.1423× 10−11 3.0769× 10−11 1.5983× 10−10 14.3131

14 4.7639× 10−14 1.3687× 10−13 7.6191× 10−13 15.3375

16 1.5578× 10−16 4.7391× 10−16 2.8033× 10−15 21.0033

Example 5. Consider the following problem{
Dy(x) = f(x) +

qx∫
0

ex cos2(t) tan2(t)dt,

y(ζ)(0) = 0, y(ζ+1)(0) = 1, ζ = 0, 2,

where nd = 2, p0(x) = 1, p1(x) = 2 tanx, p2(x) = −1 and the exact solution of equation is
y(x) = tanx.

Example 6. Assuming that{
Dy(x) = f(x) +

qx∫
0

xet sin(et)dt,

y(ζ)(0) = 1, ζ = 0, 1,

where nd = 1, p0(x) = 0, p1(x) = 1 and y(x) = ex.
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Figure 3: We observe the exact and approximate solutions for example 4 with using shifted
Legendre polynomials, N = 5, q = 0.05.

Figure 4: We observe approximation errors in various norms for example 4 with using shifted
Chebyshev polynomials, q = 0.95.

Figure 5: We observe approximation errors in various norms for example 5 with using
shifted Chebyshev polynomials, q = 0.95.

Given results implies that the errors decay as the degree of approximation N tends to infinity.
Furthermore, in this procedure we observe the linear diagram of the errors representations in all
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Table 4: Approximation errors in various norms for example 5 with using shifted Legendre
polynomials, q = 0.05.

N ∥eN∥1 ∥eN∥2 ∥eN∥∞ OrderN

2 1.1563× 10−1 1.8592× 10−1 5.5741× 10−1 −
6 1.0071× 10−2 2.1818× 10−2 9.0741× 10−2 1.0395

10 1.1379× 10−3 2.9561× 10−3 1.4903× 10−2 1.9989

14 1.4275× 10−4 4.2305× 10−4 2.4480× 10−3 2.9341

18 1.8982× 10−5 6.2397× 10−5 4.0209× 10−4 3.8581

22 2.6200× 10−6 9.3820× 10−6 6.6046× 10−5 4.7760

26 3.7118× 10−7 1.4297× 10−6 1.0848× 10−5 5.6900

30 5.3605× 10−8 2.2001× 10−7 1.7819× 10−6 6.6016

34 7.8568× 10−9 3.4115× 10−8 2.9269× 10−7 7.5115

38 1.1651× 10−9 5.3214× 10−9 4.8076× 10−8 8.4202

42 1.7443× 10−10 8.3411× 10−10 7.8967× 10−9 9.3279

Table 5: Approximation errors in various norms for example 6 with using shifted Legendre
polynomials, q = 0.05.

N ∥eN∥1 ∥eN∥2 ∥eN∥∞ OrderN

2 5.1612× 10−2 7.9678× 10−2 2.1827× 10−1 −
4 1.6152× 10−3 2.9539× 10−3 9.9485× 10−3 3.2949

6 2.7860× 10−5 5.7928× 10−5 2.2627× 10−4 5.6715

8 3.0289× 10−7 6.9792× 10−7 3.0586× 10−6 8.3505

10 2.2606× 10−9 5.6740× 10−9 2.7313× 10−8 11.2654

12 1.2286× 10−11 3.3180× 10−11 1.7288× 10−10 14.3728

14 5.0766× 10−14 1.4616× 10−13 8.1547× 10−13 17.6425

Figure 6: We observe the exact and approximate solutions for example 6 with using shifted
Chebyshev polynomials, N = 4, q = 0.05.

figures and moving the orders in all tables towards infinity versusN which approved the predicted
exponentially rate of convergence. These properties confirm that our proposed scheme produces
a high order of accuracy approximate solution for (1).
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Figure 7: We observe approximation errors in various norms for example 6 with using shifted
Chebyshev polynomials, q = 0.95.

4 Conclusion

In this paper, we presented a computational and highly accurate operational Jacobi Tau scheme
for the numerical solution of the nonlinear Volterra integro-differential equations with propor-
tional delay. Our motivation in this procedure is to convert nonlinear Volterra integro-differential
equations with proportional delay to a system of nonlinear algebraic equations, which can be
solved directly by forward substitution method. From the tables, numerical examples were given
to confirm the effectiveness and reliability of the our scheme. The authors are grateful to the
referees for their useful suggestions and comments on this paper which made it complete.
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